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We study the diffusion of tagged hard-core interacting Brownian point particles under the influence of an
external force field in one dimension. Using the Jepsen line we map this many-particle problem onto a single
particle one. We obtain general equations for the distribution and the mean-square displacement {((x;)?) of the
tagged center particle valid for rather general external force fields and initial conditions. The case of symmetric
distribution of initial conditions around the initial position of the tagged particle on x=0 and symmetric
potential fields V(x)=V(-x) yields zero drift (x;)=0 and is investigated in detail. We find ((xp)®)=R(1
—R)/2Nr? where 2N is the (large) number of particles in the system. R is a single particle reflection coeffi-
cient, i.e., the probability that a particle free of collisions starts on x,>0 and remains in x>0 while r is the
probability density of noninteracting particles on the origin. We show that this equation is related to the
mathematical theory of order statistics and it can be used to find {(x7)%) even when the motion between
collision events is not Brownian (e.g., it might be ballistic or anomalous diffusion). As an example we derive
the Percus relation for non-Gaussian diffusion. A wide range of physical behaviors emerge which are very
different than the classical single file subdiffusion {(x7)%) ~ "2 found for uniformly distributed particles in an

infinite space and in the absence of force fields.
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I. INTRODUCTION

Systems of particles governed by stochastic dynamics and
exclusion interactions have been studied for a long time
[1-3]. One aspect of this problem is the motion of a tagged
particle sometimes called the tracer particle [4—7]. The dif-
fusion of a tagged particle, in a one-dimensional system of
Brownian particles, interacting via hard-core interaction is a
model for the motion of a single molecule in a crowded
one-dimensional environment such as a biological pore or
channel [8-11], and in experimentally studied physical sys-
tems such as zeolites [12], confined colloid particles [13-15],
and charged spheres in circular channels [16]. Since particles
do not pass each other such diffusion processes are called
single file diffusion.

Confinement of a tagged Brownian particle, due to its
interaction with other Brownian particles, leads to a slow-
down of the diffusion of the tagged particle {(x;)%) <t in-
stead of normal diffusion {(x7)?) e when the particles in the
system are uniformly distributed [4,6]. Such many-body
problems can be treated using methods which exploit the
relation between the dynamics of the interacting tagged par-
ticle and the motion of a particle free of interactions
[5,6,17-20]. In recent years at least seven new directions of
research emerged. (i) The effect of an external field acting on
all the particles [21] or on the tagged particle only [22,23]
has attracted attention since pores induce entropic barriers
[10] and are generally inhomogeneous. In this category the
examples of single file motion in a periodic potential [24] or
in a box [25] were considered in detail. (ii) Initial conditions
may have a profound impact on diffusion of the tagged par-
ticle. For example, if particles start as a narrow Gaussian
packet the diffusion of the tagged center particle increases
linearly in time ((x;)?)e<t [26] (see details below). Power-
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law initial conditions induce {(x;)?)> ¢ and & is neither 1 nor
1/2 [27] (see further details in text). When an external field is
acting on the system, it is important to consider nonuniform
initial conditions where the density of particles is determined
naturally from Boltzmann’s distribution. In addition the
method of averaging plays a crucial role [28,29]. For ex-
ample, if we start from a fixed configuration of initial condi-
tions (drawn from the stationary distribution) and average
only over stochastic trajectories the behavior of tagged par-
ticle fluctuations is qualitatively different compared with the
usual procedure of averaging, which involves an average
both over initial conditions (drawn from the stationary dis-
tribution) and over the noise generating the stochastic trajec-
tories. (iii) In some investigations the underlying motion is
not normal diffusion, instead the particles may be non-
Brownian, and following anomalous kinetics [27,30]. (iv)
Usually hard-core interactions are considered, although the
hard problem of more general interactions has been recently
treated in [23,31,32]. Screened hydrodynamic interactions
which seem important at short times were investigated in
[33] both theoretically and experimentally. Granular single
file diffusion with inelastic collisions shows the typical ¢/
subdiffusion [34,35]. (v) In the presence of a constant drift
force several interesting effects are found [36]. Among the
more recent findings are oscillations in the mean-square dis-
placement [29] which are due to finite-size effects. (vi) In-
teracting particles in systems with quenched disorder is yet
another challenge. The motion of a tagged particle was re-
cently treated in the context of single file diffusion in the
Sinai model [37]. (vii) Finally, if the motion of the tagged
particle is not normal Brownian motion, what stochastic
theory replaces the usual Brownian-Langevin framework? In
this direction interesting connections to fractional calculus
emerged [23,38,39]. Roughly speaking and under certain
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conditions half order time derivatives (d'/?/dt"?) enter in the
Langevin equation [23] and fractional Brownian noise re-
places white noise.

Here we provide a general theory of single file diffusion
of the center tagged particle, valid in the presence or the
absence of an external potential field V(x), as well as for
thermal and nonthermal initial conditions. Our main results
reproduce previously obtained formulas and many new ones
by mapping the many-particle problem onto a single particle
model. Our method, explained in Sec. II, exploits the theo-
retical concept of the Jepsen line [5], is limited to hard-core
point particles, but, as we show in Sec. V, is not limited to
Brownian particles. After providing general results in Sec. III
we limit our attention to symmetric initial conditions and
potentials where the tagged particle has no average drift. A
general relation between the mean-square displacement of
the tagged particle and reflection probability of the noninter-
acting particle is given in Eq. (41). Detailed calculations of
the mean-square displacement of the tagged particle then fol-
low, for special choices of force fields and initial conditions,
in Sec. IV. As we discuss in Sec. III D, in certain limits our
problem is related to order statistics [40], a fact worth men-
tioning since it allows us to solve our problem and related
ones using known methods. In Sec. V, we discuss non-
Brownian kinds of motion and the Percus relation. A brief
report of part of our results was recently published [21].

II. MODEL AND METHODS

In our model, 2N+1 identical point particles with hard-
core particle-particle interactions are undergoing Brownian
motion in one dimension, so particles cannot pass each other.
The diffusion constant of particles free of interaction is D. As
mentioned, toward the end of the paper we discuss the more
general case where the dynamics between collision events is
not necessarily Brownian. An external potential V(x) acts on

the particles. The system stretches from -L to Z; however,
unless stated otherwise we will let L— o and obtain a ther-

modynamic limit where N/L is fixed. We tag the center par-
ticle, which clearly has N particles to its left and N to it right.
Initially the tagged particle is at the origin x=0. The motion
of a single particle in the absence of interactions with other
particles is described by a single particle Green function
g(x,xy,1), with the initial conditions g(x,x,0)=8(x—x,). In
the case of over damped Brownian motion the Green func-
tion is the solution of the Fokker-Planck equation [41].

dgbexot) | F 19
Py —D{ﬁxz - kaO.’xF(x)]g(x»on), (1)

where F(x)==V'(x) is the force field, T is the temperature,
and k; is Boltzmann’s constant. The initial conditions of N
particles residing initially to the right (left) of the test particle
are drawn from the probability density function (PDF) fx(x,)
(fL(xp)), respectively. We consider an ensemble of trajecto-
ries and average over trajectories and initial conditions (see
details below). Our goal is to obtain the PDF P(x;) where
P(xp)dxy is the probability of finding the tagged particle in a
small interval (xz,x;+dx).
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FIG. 1. Schematic motion of Brownian particles in a box, where
particles cannot penetrate through each other. The center tagged
particle label is 0, its trajectory is restricted by collisions with
neighboring particles. The straight line is the Jepsen line, it follows
vt as explained in the text. In an equivalent noninteracting picture,
we allow particles to pass through each other, and at time r we
search for the position of the particle which has N particles to its
right and N to its left (i.e., the center particle).

Jepsen line

A schematic diagram of the problem is presented in Fig. 1
for particles in a box. Initial positions of particles are given
by x{) where j=—N,...,0,...N where j is the label of the
interacting particles (see Fig. 1). The tagged particle whose
coordinate is denoted with x;(z), is the center particle j=0
(bold line in Fig. 1). Initially the tagged particle is at the
origin x7(0)=0. Since particles do not pass each other, their
order is clearly maintained, and the number of particles to
the left and right of the tagged particle N is fixed.

In Fig. 1 the straight line which starts at x=0 is called the
Jepsen line and follows x(7)=vt, where v is a test velocity
[5,6]. We label the interacting particles according to their
initial position, increasing to the right (see Fig. 1). The
tagged particle starts just to the right of the Jepsen line so at
t=0 the label of the particle to the right of the Jepsen line is
zero. In this system we have 2N+ 1 particles. Hence initially
we have N particles to the left of the Jepsen line and includ-
ing the tagged particle N+1 particles to the right.

Let a(z) be the label number of the first particle situated to
the right of the Jepsen line. According to our rules, at t=0 we
have @=0, and then the random variable & will increase or
decrease in steps of +1 or —1 according to:

(i) if a particle crosses the Jepsen line from left to right
a—a-1;

(ii) if a particle crosses the Jepsen line from right to left
a— a+1. Thus the counter & is performing a random walk
decreasing or increasing its value +1 or —1 at random times.
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FIG. 2. In one dimension, the paths of a pair of particles in a
hard-core collision event can be represented by two noninteracting
particles which pass through each other, and then their label num-
bers are switched.

A collision between two hard-core particles is represented
schematically in Fig. 2. In one dimension a hard-core colli-
sion event is equivalent to two particles that pass through
each other, i.e., noninteracting particles, and then after the
particles cross each other, the labels of the pair of particles
are switched (see Fig. 2). Instead of relabeling particles after
each collision, we let particles pass through each other, and
then at time ¢ we label our particles (or if we are interested
only in tagged particle, locate the central particle). Opera-
tionally this means that in the time interval (0,7) we view the
particles as noninteracting, and then find the particle with N
particles to its right and N to its left, which is equivalent to
the tagged particle in the interacting system. Hence the prob-
lem is related to the mathematical topic of order statistics
[40] as we will discuss briefly later.

Following Jepsen [5] and Levitt [6] we introduce the sto-
chastic process for the noninteracting particles a(r) where:

(i) if a particle crosses the Jepsen line from left to right
a—a—1;

(ii) if a particle crosses the Jepsen line from right to left
a— a+1. The process «(t) is the same as the process a(7), in
statistical sense.

As mentioned our goal is to find the PDF P(x;) which is
related to the probability that x, <vf in the usual way

Pr(xy <vt) = f” P(xr)dxz. (2)

Let Py(a) be the probability of the random variable «. The
event xpy<<vt is statistically equivalent to finding a=1 or «
=2 etc since if =1 we have particle label =1 to the right
of the Jepsen line (hence the tagged particle is to the left of
the line x;<vt). Hence

N
Pr(x; <vi) = 2 Py(a). 3)

a=1

So our plan is to find Py(a) and then using Egs. (2) and (3)
we will get P(x7). Note that from Egs. (2) and (3) it becomes
clear that the straight Jepsen line following vt is merely a
tool which could be replaced by any deterministic trajectory.

The random variable « is a sum of many random vari-
ables
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FIG. 3. Trajectories crossing the Jepsen line. In the left panel
one particle started on L and ended on L the other on R and ended
on R. These two paths are assigned the probability PLL(xal)PRR(x(l))
and yield in Eq. (6) a@=0. Similarly the trajectories on the right
panel correspond to PLL(xgl)PRL(x(l)) and they contribute a=1.

N
a= 2 &zj (4)

=N

where da; is the number of times particle j crossed the
Jepsen line from right to left minus the number of times it
crossed the line from left to right. Clearly da; may attain the
values —1 or O if the particle started on the left, or 1 or O if it
started on the right. Since we are interested in the large N
limit we may neglect the contribution of da, which is indi-
cated by the prime in the sum [42].

We calculate the probability Py(a) of the random variable
a. For that we designate Py, (x;’), the probability that par-
ticle —j, starting to the left of the Jepsen line at =0 at x’
<0, is found at time ¢ to the left of the Jepsen line. Clearly
for the corresponding trajectory da_;=0 since the particle
crossed the Jepsen line an even number of times or did not
cross it at all. Similarly, P, (xy’) is the probability to start to
the left of the line and end to its right, and Pgg(x}), Pgy(x})
are defined similarly for particles starting on x{)>0 to the
right of the line.

In our noninteracting picture, the motion of particles is
independent, hence we can use random-walk theory [43] and
Fourier series to find Py(a). It is convenient to rewrite Eq.

(4)
a= Aa; (5)

where Aaj=6aj+ 5a_j may attain the values 1, 0, and —1.
Each summand Ae; takes into account one particle starting
to the left of the Jepsen line and one to the right.

First consider N=1, that is one particle that starts on the
left of the Jepsen line and one to its right. Then a=Aq,
=Jda;+ 6a_; and as mentioned a=1 or 0 or —1. Examples for
possible trajectories are shown in Fig. 3. It is easy to see that

a=1  Prxp)Pr(xp")
Pyf(@=1a=0 Py (xg" ) Pre(xp) + Pra(xg") Pro(xp) -
a=-1 PRR(x(l))PLR(x61)-

(6)

We define the structure function
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)\(¢,xaj,x{)) = eid)PLL(xaj)PRL(x{)) + [PLL(XEj)PRR(xé)
+ P p(ig ) Pro(xh) ]+ €7 PP (xy)) Pre(x) . (7)

The structure function describes a single step in random-
walk Eq. (5) in the following usual way: the coefficient of
exp(i¢p) is the probability that Aa; is equal one (i.e.,
P, Pgp), the coefficient of exp(i¢)=1 (i.e., $=0) yields the
probability Ae;=0, and similarly for exp(-i¢). Since the
summands in Eq. (5) are independent, Fourier analysis gives

Pi(@)= - f AP (b e, (8)

We average Eq. (8) with respect to the initial conditions x,
which are assumed independent identically distributed ran-
dom variable and we find

(Pula)=3- f dFN (Ve 9)

where from Eq. (7)

\(¢) = ei¢<PLL><PRL> + (P X Pgg) + (Prr){Pgr)
+ e NP R)(Prg). (10)

Here (P;) is the probability of starting in i=L,R (relative to
the Jepsen line) and ending in j=L,R and (---) denotes an
average over initial condition. The probability (P, ) is given
in terms of the Green’s function of the noninteracting particle
g(x,x0,1) and the initial density of particles situated initially
to the left of the Jepsen line f;(x,)

0 _
(Pg(vt)) = J _fL(xo)JL g(x,xq,t)dxdx. (11)
-L vt

We see that for (P, z) we average over initial conditions in

the domain (~L,0) weighted by f;(x,) (since the starting
point is to the left of the Jepsen line) and also integrate over

x in the domain (vz,L) with the weight g(x,x,,7) (since the
end point is to the right of the line). Similarly

L L
<PRR(Ut)>=f fR(xo)f g (x, x,t)dxdx. (12)

0 vt
As mentioned f;(xy) [fr(x)] is the PDF of initial positions
of particles that initially are at x,<0 (x,>0), respectively;

hence, f;(x)=0 when x>0 and J°.f,(xp)dxo=1, while
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fr(xo) is normalized and nonzero only in (0,L). (P;;) and
(Pgry are defined similarly, and they satisfy (P;;)=1

—(Prg), and (Pg;)=1—(Pgg).

III. DYNAMICS OF THE TAGGED PARTICLE

We now apply the central limit theorem to analyze sum
Eq. (5) using Eq. (9) when N — . The small ¢ expansion of
structure function Eq. (10) is

M) =1 +iAa)d— (8P +0(F) (13

where

(Aa) = <PRL> - <PLR> (14)

as expected, and the variance o} ,=((A@)?)—(Aa)? is

‘Tia = (Pre)X{Prr) + (PLr)(PpLL)- (15)

According to the central limit theorem in the large N limit

2
p[ﬂ} (16)

Pya) ~ 2No
Aa

\r’ng'Aa
This simple result, valid for a large class of Green’s func-
tions and initial conditions, is suited for the investigation of a
large number of single file problems.

To find the distribution of x; we use Egs. (3) and (16)
replacing a sum with an integral

\rZWNUAaJ (

Pr(x; <vt) ~ ——=

(a- N<Aa>)2) et
2NoR, '

(17)

Changing variables according to 7=(a—N(Aa))/ \WUM we
have

Pr(x; <wvr) ~ L—Jm exp(— %Z)dn (18)

V27J L(Aa) Wiy,

which is the main result so far. Taking the derivative of Eq.
(18) with respect to v, following Eq. (2) switching vs— x,
and using Eqgs. (14) and (15) we find the PDF of the tagged
particle position

N[(Pg(x7)) = <PRL(-xT)>]2

P(xy) ~C exp{—

In this large N limit we neglected small corrections depend-
ing on x7 in the prefactor of the exp, namely C is a normal-
ization constant independent of x;. Equation (19) is a starting
point for further approximation: below we expand the ex-

2Pra e P o)) + (Prae) X Pre )] } ' (19)

pression in the exponent around its extremum exploiting the
fact that N is large [see Egs. (25), (30), and (40)]. In Eq. (19)
and what follows (P;(x7)) is given by Eqs. (11) and (12)
with vr— xp. Equation (19) yields the PDF of the center
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particle P(x7) in terms of (P;(x7)) which according to Eq.
(12) depends on the free particle Green’s function and the
initial conditions. Thus the information contained in the non-
interacting Green function is sufficient for the determination
of the single file diffusion of the tagged particle [44].

A. Thermal equilibrium

In the long time limit, and in the presence of a binding
potential field, e.g., harmonic field or particles in a box, an
equilibrium is reached. Then initial conditions do not play a
role. For example, (P, z(x7))=PRx;) with

1(z V(x))
PRi(xp) == (— —|d 20
& (X7) forexp o)™ (20)
where Z is the normalizing partition function
L Vi
Z:f exp[— ﬁ}dx. (21)
I k,T
Similarly
1T V(x)
Pi(xp) = EJ_Z exp(— kb—T>dx. (22)

In Egs. (20) and (22) we used the steady-state solution,
lim,_.., g(x,xy,1)=exp[-V(x)/k,T]/Z, which is Boltzmann’s
distribution suited for a system in thermal equilibrium. Using
Eq. (19) the position PDF of the tagged particle is
lim,_.. P(x7)=P%(xy)

NP - <Pz‘*<xT>>]2} o
KPP xp) PR (xr)) .

If the potential is symmetric V(x)=V(-x), e.g., particles in a
box or harmonic field, we have for not too large xr,
P{%(xp)=1/2, PR (xy) =1/2; hence, from Eq. (19)

P(xp) ~ C exp{= NI[(P(xp) = (PLOO)T}. (24)

Expanding the expression in the exponent in x; (since N is
large) we find using Egs. (20), (22), and (23)

P¥(xp) ~ C exp{—

—

2N 4N
P (xy) ~ —— exp{— —z(xr)z] (25)
N Z Zz

where with out loss of generality we assigned V(x=0)=0.
Hence the standard deviation is

2
()~ o (26)

The same expression is found in the Appendix using the
many-body Boltzmann distribution, and integrating over all
the particles except the tagged particle.

B. Simple illustration

We now consider the situation of particles free of a force

F(x)=0 with open boundary conditions L— % where initially
all the particles are on the vicinity of the origin. More pre-
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cisely, the tagged particle is initially situated at x;=0, N par-
ticles to its right on é— 0" and N particles on —e. This prob-
lem was solved already by Aslangul [26], and here we
recover the known result using our formulas. The Green’s
function g(x,xy,) of a free particle is

(x - X0)2
e Y

— (27)
V4Dt

g(xax()a t) =

where as mentioned D is the diffusion coefficient of the free
particle. With the specified initial conditions we have

[ <x—xo>2]
exp| —

(Ppy(vp)) = lim f " 8- o f R S .
=0 Jo —o V4Dt
1 g ,=x*/4Dt
:§+L V’mdx. (28)
Similarly
1 xp ,~x*/4Dt
(Pual)) =3 JO N 29)

When x;<12Dt we Taylor expand in x; to find ((Pg)
—(Pp))*~ (x7)?/ D1, using Eq. (19) we recover the result in

[26]
2
hence
()~ 22 G

The diffusion is normal in the sense that the mean-square
displacement increases linearly in time. However the diffu-
sion of the tagged particle is slowed down compared with a
free particle by a factor of 1/N which is due to the collisions
with all other Brownian particles in the system. Clearly the
approximation breaks down if one is interested in the tails of
P(x7) since we used x;<<y2Dt. Though clearly when N is
large, the probability of finding such a particle is extremely
small [i.e., use Eq. (30) P(x;=12Dt) ~exp(-N2/)].

C. Formula for {(x7)?)

We now consider symmetric potential fields V(x)=V(-x)
and symmetric initial conditions. The latter means that the
density of particles at time =0 to the left of the tagged
particle, i.e., those residing in x,<<0, is the same as for those
residing to the right, fz(xo)=f1.(=x,) (e.g., uniform initial
conditions). In this case the subscript R and L is redundant
and we use f(xy)=fr(xo)=f1(=x0), where f(xy)=0 if x,<O0,
f(x) =0, and [(f(xp)dxo=1. From symmetry it is clear that
the tagged particle is unbiased, namely, (x;)=0. Further,
since N is large we may expand the expressions in the expo-
nent in Eq. (19) in x; to obtain the leading term
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(Pre) = (Prg) = %TRPRL(XT» —(Pr(x7))] —OXT

+0[(xp?]. (32)

Similarly for small xp

(PLXPrr) + (PrrX(Prr) = 2{Prplxp)[1 - <PRR(XT)>]|X7=0
+ O(xy). (33)

To derive Eq. (32) we used the symmetry of the problem,
which means that the probability of crossing the point xi
=0 from left to right is the same as the probability to cross
from right to left <PLR>X7=O:<PRL>X7=0 and similarly
(PL1)x,=0=(Prr),=0 by symmetry. We designate the reflec-
tion coefficient,

R ={Prg) (34)

x=0

[or R=(Pp)\,=o] since it is the probability that a particle
starting at x>0 is found in x>0 at time ¢ when an average
over initial conditions is made

R= fo(xO)fL g(x,xo, 1) dxdx. (35)
0 0

A transmission coefficient is defined through 7=(Pg.), -
=(PL)x,=o Which is related to the reflection coefficient in the
usual way 7=1-TR.

Turning our attention to Eq. (32), from left-right symme-
try we have

J J
_<PRL(xT)> == _<PLR(xT)> (36)
dxr w=0 0% =0
Hence we define
J
r= 07_<PRL(XT)> (37)
XT )c]:O
where from Eq. (12)
L
r=1 flx0)g(0,xp,1)dxy. (38)
0

So r is the density of noninteracting particles at x=0 for an
initial density f(x,). Note that since (Pg;(x7))+{Prp(xy))=1
we have

(39)

r= Pl
éle x=0
Inserting Eq. (37) in Eq. (32) using Eq. (36) we have
(Pgrr)—(Prgry=2rxp+---. Inserting Eq. (34) in Eq. (33) we
find our main result: the probability density function of the
position of the tagged central particle

P(x7) ~

2
(x7) :|, (40)

V2mr( (xp)?) exp{— 2((xp)?)

where
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R(1-7R)

() = SN2

(41)
is the mean-square displacement of the tagged particle. The
single particle probability (Pgg(x7)) gives R Eq. (34) and r
Eq. (39) which in turn yield the mean-square displacement of
tagged particle Eq. (41). We will soon use this equation to
demonstrate a variety of physical behaviors. However first
we establish a connection between our work and the theory
of order statistics.

D. Order statistics

We generate n independent identically distributed random
variables drawn from a PDF #(x) and arrange them in in-
creasing order. Order statistics deals with the mth observable
m=1,...,n among n observations taken in the increasing
order, which is denoted x,,. The PDF of x,,, ¢(x,) depends

on the PDF 7#(x), the sample size n, and the order m. Let Ié(x)
be the cumulative distribution of x; e.g., if the domain of x is

—o<x <o, R(x)=[* #(x)dx as usual. Following well-known
result [40], define £ with

R(%) = (42)

n+1

then when 7 is large and m/n is of the order 1/2,
A2 AD (A
n(x—x)r(x
¢P(x,,) = const expy — % . (43)
2R(X)[1-R(%)]
Hence the variance of x,,,

_RO[1-RW)]
ni*(x)

which has some resemblance to Eq. (41).

The problem of the motion of a tagged particle is math-
ematically identical to the problem of order statistics in two
cases: (i) in the presence of a binding potential and in the
long time limit and (ii) when all the particles start on the
same point. In both cases the single particle PDF g(x,x,,?) of
all the particles are identical since it is either independent of
xo [case (i)] or we have a unique initial condition (case
treated in Sec. III B). For example, in the presence of a bind-
ing field lim,_,.. g(x,xq,1)=exp[—V(x)/k,T]/Z which is inde-
pendent of the initial position of the particle. Hence in equi-
librium, to find the center particle we may draw (2N+1)
random variables from Boltzmann’s distribution and search
for the center particle (which will give the position of the
interacting tagged particle) or, using the language of order
statistics, we have F(x)=exp[-V(x)/k,T]/Z. Using a sym-
metric potential V(x)=V(-x) and Eq. (42) we insert n=2N
+1, and m=N+1; hence, when N is large we have

(0,,)* (44)

de =—. (45)

exp{— V(XA):|
R(®) = J i bl ;

Thus, £=0. Then using Eq. (44) we find
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() = N (46)

which is the same as Eq. (26) [recall V(0)=0].

While Eq. (44) has superficially a structure similar to Eq.
(41) they are different. Our R Eq. (34) is generally not equal
half but neither must it be close to that value [so Eq. (42) is
not generally related to our problem]. In fact when r—0 we
must have ((x;)?) — 0 which is found when lim, ., R=1 (see
examples below). In the problem of motion of a tagged par-
ticle, the number of particles which can interact with the
center particle is usually increasing with time (hence n is not
fixed). For example, consider the classical case of uniformly
distributed particles in infinite space and in the absence of
forces. Roughly speaking particles at distances of the order
of I4=+Dt or shorter can influence the tagged particle mo-
tion via collisions. So in this case roughly N.g4= pv‘ﬁt par-
ticles participate in the process. In contrast, if all particles are
initially at the vicinity of the origin N particles participate,
i.e., influence the motion of the tagged particle. Interestingly
this gives an argument for the well-known behavior of the
mean-square displacement of the tagged particle, with uni-
form density of particles, namely, use Eq. (31) {(x7)?)
~mDt/2N and replace N with Neg= pVDt to find ((x;)?)
=Dt/ p which of course misses the correct numerical pref-
actor (see Eq. (54) below).

IV. PHYSICAL ILLUSTRATIONS

A. Particles in a box

Consider particles in a finite box extending from —L to L
which was recently treated with the Bethe ansatz and nu-
merical simulations by Lizana and Ambjoérnson [25]. The
tagged particle initially at x;=0 has N particles to its right
and N to its left. These particles are assumed uniformly dis-
tributed; hence,

0<xy<L

1
flxg)=\L (47)
0

otherwise

In the limit L— and N— in such a way that the density

p=N/L is fixed, we obtain single file diffusion in an infinite
system, a case well studied long ago [4,6].

The single particle Green’s function of a particle in a box,
with reflecting boundary conditions dg(x,xy,#)/dx|,--;=0 is
solved using an eigenfunction expansion [41]

1 1< _
glx,xg,t)=—+ :2 cos g(x +L) |cos ﬂj(xo
2L  Ln=1 2L 2L

2
+Ij)]exp<—Dr;;2t>. (48)

With Egs. (35), (47), and (48) we find
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exp| —-D———¢
417

R(r)=§+% D S LA P

n=1,0dd n

where the summation is over odd n. At t=0, R=1 since all

particles initially in (0,L) did not have time to move to the
other side of the box, and lim,_,,, R=1/2 since in the long
time limit there is equal probability for a noninteracting par-
ticle to occupy each half of the box. Using Egs. (38), (47),
and (48) we find

r=— (50)

hence Eq. (41) gives the mean-square displacement of the
tagged particle

R(O[1-RMIL

((xp)?) ~ 2 (51)

The eigenvalues of the noninteracting particle determine the
multi exponential type of decay of R(¢) with time, which in
turn determines the dynamics of the interacting tagged par-
ticle [46].

Let 8*=Dt/ 4E2; hence, the limit 6<<1 gives the short
time dynamics before the particles interact with the walls, or
equivalently the limit of an infinite system. The reflection
coefficient is rewritten

* —&8n? *
1 4( e I
R=—+— 2 ——0+ 2 —). (52)
2 n=1,0dd &n’ n=1,0dd n’®

When 6<1 we may replace the first summation with inte-
gration

0 @ w2 —
e -1 1 e’ -1 -\
> 55 0= —J dy = (53)
n=1,0dd &n® 2Jy )’2 2

where the factor 1/2 on the RHS comes from the summation
over only odd n on the LHS. Using 2;_ oqq1/n*=17/8 we
have R:l—i—D_t+---, and hence

2 \/D_t

((ep)®) ~ I (54)

This result was obtained in [4,6], and it describes the dynam-
ics of the tagged particle in a box, before particles have time
to interact with the walls, namely, when & is small.

In the opposite limit of long times and finite systems we
attain equilibrium, then lim,_,,, R=1/2 and

\’W

J 2,72

P(xy) ~ —=—e NI (55)
VL

hence
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FIG. 4. For particles in a box we show {(x;)%N/L? of the tagged
particle, in equilibrium versus N. Exact expression obtained in [25]
valid for all N (dots) converges in the limit of N— oo to the behavior
predicted by our theory (dashed line) Eq. (56). For N=70 clear
deviations between our asymptotic theory and the exact result in
[25] are found.

lim{(x7)?) = L%/2N. (56)

1—00

Equation (55) is a special case of the more general equation
[Eq. (25)] since the single particle normalizing partition

function for our example is Z=2L.

As mentioned, in [25] the Bethe ansatz was used to solve
the problem of tagged particle motion in a box. Among other
things an exact expression for the long time limit of {(x7)?),
valid for all N was found [25]

2(v+1)]

1
+1 F(_>
um<(xT)2>=Z2( 1 )N 2

1—©

(57)
I'(N+ 1)F<N+ 5)

Since our formalism is valid only in the large N limit, com-
parison of our solution to an exact result like Eq. (57) pro-
vides insight to the question of convergence. In Fig. 4 we
plot lim,_..{(x;)*N/L? versus N using Eq. (57) comparing it
to our Eq. (56) which gives lim, ..((x;)?)N/L?*=1/2. Not
surprisingly we see that the two results yield asymptotically
the same result. The figure illustrates that even for N=100
deviations between exact results and the present theory are
observable.

In [25] numerical simulation of systems with N=1, 10,
and 70 (maximum of 141 particles) were performed, and
favorably compared with the Bethe ansatz solution. These
simulations were made for finite-size hard-core particles
whose diameter is A. To make comparison between our
theory and simulation we scale the size of the box according

to 2L—2L—(2N)A. In Fig. 5 the scaled mean-square dis-

placement versus 7/ 7., is shown, where Teq=4iz/ D. Some
general features of our theory can now be discussed. First, at
short times simulations show normal behavior {(x;)?)=2Dt,
which is a trivial effect: particles did not have time to collide

and hence the tagged particle diffuses normally as if it is

PHYSICAL REVIEW E 81, 041129 (2010)

«x/>/(2 LY
3,

FIG. 5. (Color online) Motion of tagged particle in a box is
shown for N=1, 10, and 70. Simulation results (squares) are taken
from [25] (see text). At short time simulations exhibit normal dif-
fusion {(x7)2)=2Dt as illustrated by the straight dashed line which
is a guide to the eyes. Our theory is expected to work well in the
large N limit and when many collision events between tagged par-
ticle and surrounding Brownian particles took place. Hence agree-
ment between theory (solid line) and simulation is reasonable at
most only for N=70 and not for too short times.

free. After particles start to collide, deviations from normal
diffusion are observed (for N=70 but as expected not for N
=1). These are mainly due to collisions with other particles.
Finally saturation due to the finite size of the system is
found. While our theory shows the general trend of simula-
tions (say for N=70 and for not too short times) it is clearly
not in perfect agreement. We argue that this is due to the
small number of particles N=70 since as we showed in Fig.
4, at least for large times and large N our theory gives the
exact result. It would be nice to have simulations with point
particles, with larger N and since there are three phases of the
motion: normal diffusion, single file diffusion without the
influence of the walls and finally saturation to equilibrium.
Separation of time scales is needed to demonstrate these be-
haviors clearly.

B. Gaussian packet

Consider particles without external forces V(x)=0 in an
infinite system. Initially particles are spread with a Gaussian
packet with width &,

2
u} (58)

)
flxo) = \,‘Tgexp{— T

for xo>0. As before we consider the tagged particle motion,
which is initially at x7=0, with N particles to its left and N to
its right. With the free particle Green’s function g(x,x,?)
[Eq. (27)] we proceed to find {(x7)?).

Reflection probability Eq. (35) is

R = J dxo /ie_(xo)%ng dx o~ — 1) H4D1
0 & V47Dt

(59)

Changing variables according to y?/2=(x—x,)?/4Dt and us-

ing dimensionless parameter E= &/ \ETDt, we find
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FIG. 6. Scaled mean-square displacement of the tagged particle
with Gaussian initial conditions of the packet of particles exhibits a
transition between short time {(x7)2)o "2 law to ((x7)?) o<t behav-
ior. Dashed lines are short and long time asymptotic behavior [Eq.
(64)], circles represent Eq. (63).

11 [2(" Erf(xo/\2
R = 5 +— \/jf dxpe ~(% )2/2§2M (60)
g aw 0 2

where Erf()?o/\E)/ 2= fgoe—y%dy/\s'ﬁ is the error function
[45]. MATHEMATICA solves the integral in Eq. (60) and we
find

11 \2D1
R = — + —arccot ) (61)
2w 3
For short times \Dt<§ we have R ~ 1—ﬂ namely most

particles did not have time to cross the origin, while in the
opposite limit lim,_,,, R=1/2 due to the symmetry of initial
conditions. The calculation of r Eq. (38) using Egs. (27) and
(58) is straightforward

1
" 2\mDt1+ &bt
Inserting Eqgs. (61) and (62) in Eq. (41) we find

2t ] o
+ 2 1 712arccot 2 )| (

This solution is shown in Fig. 6 with its two limiting behav-
iors

(62)

<mﬂ~é£@

short times 2Dt < &

((ep)?) ~ (64)
D . ’
—t long times 2Dt > §&.
2N

For short times the particles do not have time to disperse;
hence, the motion of the tagged particle is slower than nor-
mal, increasing as ¢/> which is similar to the single file dif-
fusion with a uniform density [Eq. (54)]. Roughly speaking,
for short times the tagged particle sees a uniform density of
particles with p=N/§. For long times we recover the behav-
ior in Eq. (31) since the scale of diffusion is much larger than
& Hence if we start with a Gaussian or delta function packet
we get in the long time limit similar behavior, as we showed.
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C. Particles in harmonic oscillator

Consider particles in a harmonic potential V(x)
=mw’x*/2 where >0 is the harmonic frequency. The
single particle undergoes an Ornstein Uhlenbeck process
[41] and the corresponding single particle Green’s function is

1 { (x — xpe™"7)? ]
exp| —
2aDr(1 -2 P 2Dl - e 217

g(x,xg.1) =

(65)

where (7)"'=Dmw?/k,T is the inverse relaxation time.
We assume thermal initial conditions

2\ maw? maw*x*
exp| — , Xo>0. (66)
2k, T 2k, T

S (xo) =

Using Eq. (38) it is easy to show that
1

V2 7T§[h

r= (67)
where the thermal length is &;,= VDr= Vma?/ k,T. Note that
one can write r=1/Z which as we will soon prove is a
general result valid for all potential fields satisfying V(x)
=V(-x), provided that the initial condition f(x,) is the ther-
mal equilibrium. The reflection coefficient [Eq. (35)] is

R=—+\/ f "’y/zErf< F)dy, (68)

where n=e"\1—-¢ /7. Using MATHEMATICA
11 J—
=5+ —arccot(Ve*' 7= 1). (69)
a

For short times #/ 7<<1, R ~1—+2¢/ (Tr\s’;), and for long time
R~1/24e""/ .

Using Egs. (41), (67), and (69) the mean-square displace-
ment of the tagged particle is

1 1
((xp)?y= §m 1 7igarccotz(\ 21| (70)
For short times << 7
<mﬂ~¢&5. (71)

Such a behavior is expected, as well known for short times
the diffusion process of the Ornstein Uhlenbeck process x
~ 112 is faster than the drift x~¢ and dominates the process;
i.e., take << 7in Eq. (65) and get the Green’s function of the
force free particle Eq. (27). Hence for short times we can
neglect the external field, but use of course Gaussian initial
condition Eq. (66). Then the problem reduces to the short
time behavior of the Gaussian packet, free of external forces
(compare short time behavior in Eq. (64) with Eq. (71) when
£—&;). The long time limit of Eq. (70) gives ((x;)?)
~ mé&; /4N which is the thermal equilibrium behavior pre-
dicted more generally in Eq. (25). Behavior of the scaled
mean-square displacement and its asymptotic behaviors is
presented in Fig. 7.
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FIG. 7. Scaled mean-square displacement of tagged particle in
harmonic field Eq. (70) exhibits a transition between a short time
{(xp)?) <12 law to saturation due to the binding field. The horizon-
tal dashed line is the long time <(XT)2>=7T§t2h/ 4N behavior, the
dashed line is short time limit Eq. (71), and the dotted dashed line is
Eq. (70).

D. Thermal initial conditions

If we assume that initially the particles are in thermal
equilibrium, our simple formulas simplify even more. If
Sf(x0)=2 exp[—V(xy)/k,T]/Z then r=1/Z. To see this notice
that for symmetric potentials V(x)=V(-x) we have g(0,
—x0,1)=g(0,x0,) and

2 (~ Vi
r:gf exp[— ]::;)]g(o,xo,t)dxo (72)

yields

£(0,x0,1)dx, (73)

where we assumed that the potential is binding so a station-
ary solution of the Fokker-Planck equation is reached; i.e.,
the free particle is excluded. Therefore r [Eq. (73)] is the
probability of finding a noninteracting particle at the
origin, with thermal initial conditions. Since the thermal
equilibrium density is the stationary solution of the Fokker-
Planck operator, r is time independent and equal to r
=exp[-V(0)/k,T]/Z. We can always take V(0)=0 and then
r=1/Z. Examples for this behavior are the already analyzed
cases of particles in a box with uniform initial density [Eq.

(50)] (since Z=2L for that case) and similarly for particles in
a harmonic potential with initial thermal density [Eqgs. (66)
and (67)]. Hence using Eq. (41)

R(1-R)Z?

((x)?) = N

(74)

For the symmetric and binding potentials under consider-
ation, we have lim,_,., R=1/2 and hence Eq. (74) in the long
time limit yields equilibrium behavior Eq. (26).
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E. Power-law type of initial conditions

Flomenbom and Taloni [27] considered particles free of
external forces; hence, the free particle Green’ function is

_ 2
, exp[— Sie) ] (75)
\4mDt 4Dt

g(x,xp.1) =

with initial conditions of power law type
fxg) =Blxo[? 0<x,<L (76)

for 0<B<1. Here the system size L— and the reader

should not confuse L with L. The normalization of the PDF
of Eq. (76) yields B=(1-B)LF!. In the limit 83— 0 and L
— o0 in such a way that p=N/L remains fixed, we anticipate
the classical case of single file diffusion in the presence of a
uniform density of particles: {(x?)¢!? [Eq. (54)]. In the op-
posite limit of 8— 1 the particles are initially concentrated at
the origin, and we expect the behavior (x?)oct [Eq. (31)].
Thus 0<B<1 bridges between these two known behaviors,
indeed one finds ((x_iz)mt(ﬁ"l)/2 as shown in [27]. The latter
is valid for times V4Dt <<L as discussed below. This indicates
that specially chosen initial condition may control the quali-
tative behavior of the diffusion of the tagged particle. Here
we analyze this case using our formalism finding analytical
expressions for the mean-square displacement.

To obtain ((x7)?) all we need to do is to find r and R.
Using Egs. (38), (75), and (76),

(1-p5) 151 fu\m 5

— i B,y

r= — e dy, (77)
Jr (V4DnA ), Y Y

solving the integral

_(-p l[r(ﬂ> r1* L_z)}
"T T Ur (Vabnf2 2> )7\ 2 Capd) |

(78)

where I'(a,z) is the incomplete Gamma function [45]. The
following behaviors are found for short and long times:

P!

=
C,m /—— 14Dt <L
(V4Dr)? !
r= | (79)
—
—— \4Dr> L.
47Dt

In the short time limit we took the upper bound in integration
in Eq. (77) to o so

-8 (" 45 1-BI(1-p/2)
c,= 7n Oyﬂe}dy=’—/7—TT. (80)

Inserting Egs. (75) and (76) in Eq. (35) we find the reflec-
tion coefficient

11 Lo\P L
R=—+—-(1- )(—) f dyy P Erf(y).
S t5-8 Vit . vy y

(81)

In the limit of long times we get the expected behavior
lim,_ . R=1/2 since then half of the particles are to the left
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of the origin and half to the right (in statistical sense). MATH-
EMATICA solves the integral in the last equation in terms of
tabulated functions

fx  Exf(y) L
y P Erf(y)dy = ———F
0 (1-pN=m

—xﬁr(l —g)} (82)

where E,(z)=[{dt exp(-zt)/t" is the exponential integral
function.

To analyze the short time behavior we use integration by
parts in Eq. (81) and find

== -— r
2 2 \’/4_Dt V4Dt \aDr

9 [LN4Dt
-— yl_Be_yzdy]. (83)

{x[ \J'TT Erf(x) + xE B/z(xz)]

N

Using asymptotic properties of the Erf function [45], neglect-
ing terms of the order of exp(~L?/4D1), Eq. (83) for V4Dt
<L gives

[ 1—[8
4Dt

N
L

with
1 (" F(l_g)
cr=—=| ¥V dy=——". (85)
NJo 2N

Equations (78), (81), and (82) yield the mean-square dis-
placement Eq. (41). The short time behavior V4Dt <L,

2V'7T —
2 L'"B(N4Dn) '8, (86
() ~ ZN(I G gyt OAp) e, s6)
while for long times \54Dt>L,
Dt
<(xT)2>~E (87)

Thus after a long time the diffusion is normal ((x7)?)t,
exactly like the case where all particles started initially on
the origin [Eq. (31)]. While for short times ((x7)?) o (1+P/2,

Taking the limit 8— 0 in Eq. (86), we get the well-known
result of single file motion in uniform density of particles
[4,6] Eq. (54), with the density p=N/L. In the opposite limit
B—1 we have <x2>= D1 for all times which is the same as in
Eq. (31). Note that the 11m1t B— 1 must be treated with care,
the short time limit and the 8— 1 limit do not commute due
to the 1/(1-p)? divergence in Eq. (86). When S—1 all
particles are centered on the origin hence we get the same
behavior as in Eq. (31).

V. PERCUS RELATION: BEYOND BROWNIAN
PARTICLES

So far we considered the case where particles are diffus-
ing according to the laws of Brownian motion in between

PHYSICAL REVIEW E 81, 041129 (2010)

collision events. What happens for other types of motion?
For example, what happens when the underlying motion it-
self is anomalous [27,30].

Percus [18] (see also [27,47]) investigated a general rela-
tion between the diffusion of the tagged particle and motion
in the absence of interactions (free motion) ((x7)?)
~(|x[}gree/ p. Such a relation was suggested for normal diffu-
sion where we have {|x|)qe.#!"2, s0 {(x7)?)<t'"? and for a
particle moving ballistically between collision events hence
(|x|)rec*t and therefore when we turn on the interactions
((x))*oct. This simple relation between free particle motion
and the mean-square displacement of the tagged interacting
particle is expected to work for an infinite system, with a
uniform density p of particles, and when external forces are
zero [F(x)=0]. Here we will derive the Percus relation from
our formalism for more general dynamics.

Assume that the Green’s function of the noninteracting
particle can be written in the scaling form

1 G X=Xy (88)
\/K_at'y/Z V”K_yt‘y/Z !

We assume G(y)=G(-y) and from normalization
[7.G(y)dy=1. Here the free particle motion is anomalous, so
that {|x|)gee % 2”'? for 0<y and not equal unity. For example
the underlying motion might be subdiffusive continuous time
random walk (CTRW) [48-52] or fractional Brownian mo-
tion, where in the latter case G(y) is Gaussian and in the
former G(y) is expressed in terms of Lévy distributions (see
some details below). We assume that moments of the process
are finite. The constant K, has units of m?/s”.

To obtain the mean-square displacement of the tagged in-
teracting particle we calculate reflection coefficient Eq. (35)

X—X dx
R__f dxof (\r yﬂ%)v K" (59

Here we used uniform density of particle f(x,)=1/L, and we

g(x,xo,1) =

will consider the limit L— o with the densuy p being kept
fixed. Change in variables y=(x-— xo)/\'l(yt“y/2 and using

L/ \Kyﬂ/z—wo we have

1 (L ”
R~ :J dxoj G(y)dy. (90)
LJ0 —)c()/\:“K—yz,‘y/2

Integrating by parts, changing variables y=x,/ V”Zﬂ/z, and
using the normalization condition, we have

2L

where the mean of the absolute value of the free particle
motion is by its definition

* by dx
<|x|>free = f_w |x|G< \/K_—yty/z> V,’Zyty/z . (92)

Here we used the assumed symmetry G(y)=G(-y) which
means that the underlying random walk is not biased, as a
result (|x|>—\Kyt7/22f0yG(y)dy It is easy to see that r
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=1/2L. In the limit where N— and L— % we find using
Egs. (41) and (91) the Percus formula for a general class of
stochastic dynamics

<|x|>free )

((ep)?) = (93)
Clearly this equation gives a useful relationship between mo-
tion of a free particle and the same particle moving in single
file when it is surrounded by identical particles whose den-
sity is p,

As a simple example consider fractional Brownian motion
where g(x,x,1)=(\47K ") exp[-(x—x)?/4K 1”], where
0< y<2. Then Eq. (93) gives

() = 2K (04)

pNT

Hence if the underlying motion is ballistic y— 2 the motion
of the tagged particle undergoing single file dynamics is nor-
mal with respect to time {(x;)?)«¢. For a CTRW particle in
the continuum approximation the noninteracting single par-
ticle green function is governed by the fractional diffusion
equation [50-52]

97 _ 7
ﬁg(x,xo,t) = Ky@g(x,xo,t) (95)

with 0<y<1. From this equation it is easy to find [53]
(|XDsree= VK,#7/T(1+y/2). Hence using Eq. (93)

((xp)® = M (96)
P27 (1 + 912)

We see that independent of the mechanism of the underlying
anomalous diffusion (i.e., fractional Brownian motion, or
CTRW) we get for the tagged particle {(x,)?)~ ¢”>. Further
our general results show that the Green’s function of the
tagged particle is Gaussian even though the Green’s function
of noninteracting CTRW particles is highly non-Gaussian.
Warning: one should be careful when applying our results
to the CTRW model, namely Eq. (96) should not be abused.
One mechanism of anomalous diffusion are the power-law
waiting times of Scher and Montroll [48] which yield slow
dynamics, as captured by the CTRW [49,50] and the frac-
tional Eq. (95) [53]. Single file diffusion with such subdiffu-
sive motion as the starting point was considered recently
theoretically and with simulations in [27,30]. It should be
noted that the meaning of collision in such a model should be
taken with care. For a random walk on a lattice with waiting
times on each lattice point, one can envision several collision
rules. For example, one might allow two particles to occupy
the same site at a given time, or one may consider a mecha-
nism were a particle once hopping into a trap already occu-
pied will eject the particle previously residing in the trap. Or
a particle is allowed to jump only into an empty site, as is
usually assumed. These types of collision rules might yield
behaviors different than ours. For example, a particle stuck
with a very large sojourn time, might be ejected by another
particle; hence, one can imagine a situation where some form
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of interaction causes the particles to move faster. In our work
the collision implies that we can let particles go past one
another as if they were noninteracting (so on a lattice two
particles may occupy the same point at the same time) and
eventually we look for the center particle. Even more inter-
esting will be to investigate interacting particles in systems
with quenched disorder since the latter, when strong enough,
is known to lead to non-Gaussian subdiffusion [48,49]. There
simple formula Eq. (93) is generally not expected to hold.
Indeed in [37] single file motion of a tagged particle in the
Sinai model was considered, the results are much richer
when compared with Eq. (93).

VI. DISCUSSION

The one-dimensional problem of motion of a tagged par-
ticle interacting via hard-core interactions with other par-
ticles was solved using the Jepsen line. The formalism we
developed treats both Brownian and non-Brownian motion in
between collision events, is suited for rather general external
fields acting on the particles, for open and closed system, and
handles also different types of initial conditions. Following
others we have mapped the problem onto a noninteracting
problem using the Jepsen line. The motion of the tagged
particle belongs to the general problem of order statistics.
The problem reduces to considering a list of 2N+ 1 random
variables and finding the distribution of the variable which
has N variables smaller than it and N larger corresponding to
center particle (note that the right most particle we will have
an extreme value problem). Classical theory of order statis-
tics deals however with the case where all the random vari-
ables have identical distributions. In contrast in the exclusion
process under consideration, particles have nonidentical dis-
tribution. Thus except for two cases: (i) all the particles ini-
tially on the same position and (ii) equilibrium state, the
problem deals with nonidentically distributed random vari-
ables (since the initial condition are nonidentical). While we
treated the problem of symmetric potential and symmetric
initial condition for the center particle in detail, it is left for
future work to consider nonsymmetric potential fields, non-
symmetric initial conditions, and the dynamics of the particle
in the tails of the packet. We believe that the methods devel-
oped here with some modifications can treat these cases too.
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APPENDIX

In this appendix we use Boltzmann’s distribution for the
interacting system to find the PDF of the tagged center par-
ticle in equilibrium. The multidimensional PDF for 2N+ 1
interacting particles, in the presence of an external binding
field V(x), with V(x)=V(-x), acting on all of them is
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(A1)

where Z,y,; is a normalizing factor, and 6(x) is a step function: 6(x)=0 if x<<0, 6(x)=1 for x=0. The center tagged particle
is xo=x7. To find the PDF of x; in equilibrium, which we call P*U(x;), we must integrate Eq. (A1) over all coordinates besides

Xo—Xr

V(xy)

. exp[ L kT }
P(xy) = dx_N dx_N+1 dx_lexp -

Z2N+1 X_p

We rearrange the integration limits, as explained in Fig. 8

T T
f dx_y J dx_yipo
—o0 X_N

Hence we can use

X7 X7 1 X7 X7 X X_N 1 [ X7
f dX_Nf dx_N+1 et = E f dx_Nj dx_N+1 R J dx_NJ dX_N+1' = EJ d.XNJ dx—N+l te
—o0 X_N —o X_y —o0 —o0 —oo —oo

Repeating this procedure we rewrite Eq. (A4) as

[ V@)

xr
P*Y(x;) = Nor f dx

where Nor is a normalization constant and Z is defined in Eq.
(21).

Thus Eq. (A5) describes a problem of order statistics
which is extensively investigated by mathematicians, as
mentioned in Sec. III D. P*9(x;) Eq. (A5) is the PDF of the
random variable which has exactly N random variable larger
than it and N smaller. In this sense we have transformed the
problem to a noninteracting system, similar to the noninter-
acting picture in the main text. The information contained in
the single noninteracting particle; i.e., the single particle
Boltzmann distribution exp[—V(x)/k,T]/Z is all what is
needed for the calculation of the position of the tagged par-
ticle.

Using the symmetry V(x)=V(-x) we have

fxT e—V(x)/kBTd 1 fxT e—V(x)/kBTd
—dx=—+ —dx,

A6
z 2 ), z (46)

—00
and

XN+l XNt

T il

FIG. 8. Left panel integration in the domain —oo <x_y<xy,
X_y<x_yy1 <xr is equivalent to integration —o°<x_y<xp, —%
<x_y41 <x_y (right panel).
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£ =, (A5)
VA VA
T
|
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o Z 2 ), z
Using Egs. (A6) and (A7), we rewrite Eq. (A5) as
o~V T
Peq(xT) = Nor eNln 1/4
VA
X7 2
o VOIkT g
Xexp|NIn|1-4 O—dx
VA
(A8)

In the limit N— o only x; with [(7exp[-V(x)/k,Tldx/Z<1
will have a measurable contribution to P*4(x;) since if this
condition is not satisfied, the value of P®(x;) is exponen-
tially small in N. Expanding In in Eq. (A8) we have

X7 2
dxe—V(x)/ka
0

V(XT)
k,T

P(xy) exp[— }exp —4N

z
(A9)

Since N>1 we expand [y’exp(=V(x)/k,T)dx=x; where we
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used V(0)=0. We use V(x;)/k,T<N(x7)>/Z* which holds in
the center part of the PDF of the tagged particle [since N
>1, V(0)=0, and V(x) is analytic] P*(x;)~C exp[

PHYSICAL REVIEW E 81, 041129 (2010)

—4N(x7)?/Z*] where C is a normalization constant. This final
approximate result is the same as Eq. (25), justifying the
tricks used to derive our main results.
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